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A B S T R A C T   

Machine learning methods are increasingly used in analyzing remotely sensed data and studying different aspects 
of agricultural production. In particular, several of these flexible models are widely adopted to predict regional 
crop yield during or after the growing season. However, most existing models cannot be applied when dealing 
with functional covariates. In this paper, an approach based on multidimensional scaling is proposed to generate 
a set of artificial covariates from empirical density functions of different phenomena captured within specific 
administrative boundaries through satellites. In contrast to traditional aggregation methods, this approach is 
designed to reduce the loss of information associated with the use of summary statistics as covariates. The 
proposed methodology is applied to NASA remote sensing data, combined with information from surveys and 
USDA’s end-of-season county estimates, to study the prediction accuracy of different crop-yield models for three 
major crops in North Dakota.   

1. Introduction 

The United States Department of Agriculture (USDA) National 
Agricultural Statistics Service (NASS) is mandated by the United States 
(US) Congress to publish official statistics for major crops produced in 
the US at the county, state, and national administrative levels. These 
statistics play significant roles in several aspects of the US economy, 
ranging from market regulations to business decisions pertaining to 
marketing and risk management. Therefore, accuracy and timeliness are 
both critical objectives in NASS estimates and forecasts. 

Crop forecasting has evolved over the decades as theoretical ap
proaches improved, data collection intensified, and technology 
unlocked new analytical and computational capabilities. Irwin (1938) 
distinguished between subjective yield forecasts based only on expert 
opinions and objective methods relying solely on meteorological infor
mation. Cochran (1938) further discussed agricultural meteorology 
when noting the challenges between early-season yield predictions and 
post-harvest estimates. It was also noted that the prediction task is more 
difficult due to unstable weather dynamics and other factors that have a 
substantial effect on the actual yield. Yield forecasts of this time were 

largely derived using linear models. While still widely used for their 
simplicity of interpretation, these models can be limited as they exclude 
any important nonlinear effects. Additionally, objective-yield measure
ments used to derive forecasts for large geographic areas were sparsely 
sampled due to technology limitations. With the subsequent introduc
tion of satellite technologies, Walker and Sigman (1982) compared two 
estimators that combined remote sensing information with survey data 
to provide estimates for administrative areas having few or no sampling 
units. However, these two estimators were originally developed under 
unrealistic assumptions of normality to quantify cultivated areas rather 
than yields. 

Matis et al. (1985) developed a crop simulation model based on 
Markov chains using soil moisture data to forecast crop yield distribu
tions. Although they compared their approach to a regression method, 
the precision of the yield forecasts was not evaluated. Other families of 
simulation models were considered by Doraiswamy et al. (2005), who 
computed county-level yield predictions based on data acquired by the 
National Aeronautics and Space Administration (NASA) Moderate Res
olution Imaging Spectroradiometer (MODIS; Justice et al., 2002) in
struments. However, their model must be calibrated when applied to 
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different areas. To avoid calibration, the distribution of agricultural 
yields was assessed by Wang et al. (2012) through a Bayesian model that 
achieves accurate forecasts for the speculative region associated with a 
crop using only multiple repeated surveys. The extension provided by 
Nandram et al. (2014) allows one to forecast state-level yields in the 
United States. Cruze et al. (2019) and Erciulescu et al. (2020) focused on 
crop production estimates computed at the county level using Bayesian 
inference methods. However, these Bayesian models are all linear and 
do not consider relevant crop phenology information. Furthermore, 
Bayesian inference suffers from several drawbacks despite its popularity. 
Notably, it is computationally demanding, and for this reason, it restricts 
the analysis to quite rigid models. The effects of using linear models for 
yield prediction were discussed by Rasmussen (1997), who highlighted 
the irregular distribution of residuals and noted that this and other issues 
could be related to model misspecification due to unknown nonlinear 
relationships characterizing the data. 

Young (2019) provided a review of current methods being used to 
produce official statistics for large geographical areas by integrating 
survey data, administrative records and other sources of information. 
Early attempts to integrate several sources of information during the 
growing season for forecasting agricultural yields at different adminis
trative levels of aggregation were made by Chipanshi et al. (2015), who 
discussed the role of their methods to complement early season survey 
estimates. Some private firms in the agronomic industry are capable of 
producing yield forecasts at much finer resolution than the official US 
county estimates. This is accomplished by using big data obtained from 
remotely sensed images and precision-agriculture technologies. Due to 
the large amount of useful information currently available, machine 
learning algorithms have been extensively used in recent years to fore
cast crop-yields (Elavarasan et al., 2018). For example, Cai et al. (2017) 
and Zhao et al. (2017) studied a variety of semi-parametric regression 
models to predict crop-yields at the end of the harvesting season. They 
linked NASS official statistics (yield estimates and crop conditions) at 
the county level with a variety of other data sources acquired during the 
growing season. Predictive approaches in machine learning use flexible 
regression models that can account for nonlinear effects and produce 
more accurate predictions for the unknown values of a response vari
able. Classification and Regression Trees (CART; Breiman et al., 1984), 
Random Forests (RF; Breiman, 2001), Support Vector Machines (SVM; 
Cortes and Vapnik, 1995), Artificial Neural Network (ANN; McCulloch 
and Pitts, 1943) and Cubist (Quinlan, 1992; Quinlan, 1993) are among 
the most common models that improve prediction accuracy. However, 
all these models were developed under the assumption that all input 
variables are organized into numerical structures (mostly vectors or 
matrices). Several extensions of generalized linear regression models 
have been proposed to combine numerical and functional predictors 
(Moyeed and Diggle, 1994; Zeger and Diggle, 1994; Hoover et al., 1998; 
Wu et al., 1998; Lin and Ying, 2001; James and Hastie, 2001; James, 
2002), but these methods only considered functional data that vary over 
time. 

The use of deep neural network (DNN) models as proposed in Jiang 
et al. (2020) focused on Long-Short Term Memory (LSTM) networks to 
better capture nonlinear relationships among sequential patterns over 
time and agricultural yields. Convolutional Neural Networks (CNN; You 
et al., 2017) have been also applied to explore spatial phenomena, while 
the combination between CNN and LSTM networks (Sun et al., 2019) has 
recently provided an enhanced framework to process tensor-valued 
training data. However, despite the popularity of deep neural network 
(DNN) models, these suffer from several drawbacks (Ertel, 2018). For 
instance, the validation and training of a DNN are quite challenging 
tasks and have profound consequences in developing and finalizing a 
reliable predictive model. Furthermore, the extracted features are based 
on a sequence of numerical transformations designed to improve the 
prediction accuracy without accounting for other statistical properties 
that could be beneficial in describing useful relationships between the 
input data and the output. 

This paper introduces an innovative approach for extracting nu
merical features from remotely sensed data to better inform crop-yield 
predictions and to assess the associated levels of uncertainty. The aim 
of this approach is to reduce the loss of information due to traditional 
data-aggregation strategies used to summarize remote sensing data. The 
proposed methodology provides a set of artificial covariates that is 
created by extracting most of the information from the empirical density 
functions of real-life phenomena estimated at the county level. This al
lows relevant features of empirical densities to be used as input variables 
in standard machine learning algorithms. County-level predictions of 
crop yields (and correspondent measures of uncertainty) are succes
sively obtained with the fitted models by accounting also for state-level 
expert opinion and survey data summarized at the county level. 

This article is organized as follows. Section 2 provides an overview of 
the current remote sensing methodology used at NASS to assist the 
Agricultural Statistics Board in the production of official estimates. 
Section 3 describes an innovative approach for extracting numerical 
features from remotely sensed images, linking those features to histor
ical official statistics and survey data, and predicting yields for well- 
defined administrative areas. A case study is provided in Section 4 to 
establish the performance of machine learning algorithms in predicting 
the yields of three major crops (corn, soybeans, and wheat) in North 
Dakota (see red area in Fig. 1). Concluding remarks are given in Section 
5. 

2. Overview of current remote sensing methodology 

The current remote sensing methodology in use at NASS is primarily 
based on the use of vegetation indices. Historically, linear relationships 
between yield and stress-degree-days were found by Hatfield (1983), 
who focused on defining the reproductive period of a crop’s life cycle 
using spectral and thermal data. However, these data relationships were 
not always maintained due to differences in agricultural practices in 
different regions. This issue was addressed by a quadratic model 
developed by Hayes and Decker (1996). Their model made use of weekly 
data to provide yield forecasts at least two months prior to harvest, and 
they discussed the role of weather assessment in the forecasting process. 
These two approaches were successively extended by Johnson (2014), 
who developed a procedure to predict county-level yields that are in
dependent from NASS survey data (see Fig. 2). Historical data from 
satellite imagery and county-level NASS official statistics are combined 
to build a data set for training and validating a machine learning model. 
Afterwards, the new remotely sensed data collected within the growing 
season are processed to generate a separate dataset that serves to pro
vide out-of-sample yield predictions after the growing season has ended. 

Currently, the imagery data that NASS uses for remote sensing yield 
estimation is acquired by NASA MODIS instruments (Johnson, 2016), 
which are found on the polar orbiting Terra and Aqua earth observation 
satellites (Barnes et al., 2003). This two-satellite constellation views the 
entire Earth’s surface every one to two days and collects data in 36 
spectral bands. The wavelengths that these bands cover range from short 
bandwidths for visible light to longer wavelength thermal bands. For 
assessing vegetation density, remote sensing researchers rely on the 
most pertinent visible light and the longer near-infrared (near-IR) bands. 
This is due to the nature of plants themselves, where chlorophyll 
strongly absorbs visible light for use in photosynthesis, and leaf cell 
structure strongly reflects near-IR light. Additionally, canopy tempera
ture is an important factor in crop growth monitoring. Therefore, MODIS 
reflectance and thermal bands have been widely used for tracking and 
assessing crop growth. 

The red and near-IR bands (respectively denoted by ϱRed and ϱNIR) are 
combined into the Normalized Difference Vegetation Index (NDVI; 
Tucker, 1979), i.e. 

NDVI =
ϱNIR − ϱRed

ϱNIR + ϱRed
.
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The evolution of this index value and the variations of the thermal bands 
during the growing season summarize most of the information needed to 
properly predict crop yield (Johnson, 2014). The red, near-IR, and 
thermal band data are collected by MODIS instruments and are globally 
available as 8-day composite high-level-product raster-image tiles. 
Those tiles, which cover the area of interest, are spatially mosaiced 
together as a series of composite images that span a well-defined period 
between early April and late October. The resulting raster images are 
then clipped by a specific crop based on the NASS Cropland Data Layer 
(CDL; Boryan et al., 2011), which is a GIS layer identifying the location 
of 112 crops during a growing season. The result is useful masks that 
remove spurious signals from other crops or forested areas. Once the 
remotely sensed variables have been cleaned by the masking process, 
they are summarized at the county level by taking averages. 

Averaging the pixel values over the fields covered by the crop of 
interest is computationally advantageous. In fact, a well-organized 
dataset can be easily constructed by linking official statistics published 
by NASS at the county level with the average dynamic of important 
remotely sensed predictors. Furthermore, this approach allows one to 
train and validate a model to predict county level yield; however, the 
dynamics learned at a higher aggregation (e.g. at the county) level can 
later be used to predict yield at the pixel level. On the other hand, av
erages are not robust and may produce unreliable values due to the 

possible presence of outliers in the data. Furthermore, averages do not 
fully summarize any observed stochastic process at the county level 
causing possible losses of information by ignoring field-level and/or 
pixel-level variability. In the next section, a new approach to link remote 
sensing data to both official statistics and survey summaries is proposed 
to address the loss of information. 

3. Use of empirical densities in predicting yields 

The temporal evolution of the predictor variables is characterized by 
dynamic variations of a multivariate distribution describing the 
behavior of a stochastic process observed over the crop fields of interest. 
When summarizing remotely sensed data from pixel-level values to 
higher levels of aggregation, the use of statistics beyond the mean (such 
as variance, skewness, kurtosis and other higher moments) can fully 
describe the underlying unknown distribution of the observed stochastic 
process. However, this approach is not robust to outliers when the un
derlying model assumptions are either violated, ignored, or misspecified 
(Pearson, 2005, Section 2.2.1). Furthermore, different spatial resolu
tions of the images used for producing values at the desired level of 
aggregation can adversely affect model results (De Wit, 2005; Gao et al., 
2018). To address these issues, a dynamic temporal multivariate dis
tribution can be empirically estimated, but this solution is not feasible 

Fig. 1. The state of North Dakota highlighted with respect to the other states in the conterminous US.  

Fig. 2. Graphical representation of the current approach to predict agricultural yield at the county level using summary statistics from remote sensing data.  
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since standard kernel density estimators become computationally pro
hibitive when processing more than two spectral bands (Hastie et al., 
2009, Chapter 6). Therefore, the empirical estimation of marginal den
sities becomes a computationally viable option to summarize and study 
the evolution of remotely sensed variables at different spatial resolu
tions. The use of histograms as covariates instead of summary statistics 
was initially proposed by You et al. (2017) to better inform their pre
diction model. In particular, relevant features are extracted through a 
DNN consisting of several convolutional layers that provide a nonlinear 
mapping from histograms to yield. 

In contrast to a convolutional DNN approach, a multidimensional 
scaling (MDS) methodology is proposed to generate a set of artificial 
covariates that are later used in several predictive algorithms (similarly 
to Cuadras and Arenas, 1990; Boj et al., 2016). Furthermore, MDS is the 
foundation of distance-based regression methods that are also well- 
suited for minimizing the loss of information caused by the trans
formation of county-level density functions into data vectors (see Fig. 3). 

MDS allows one to summarize relevant statistical properties of the 
marginal distributions of interest, while the effect of outliers is mitigated 
through smoothed histograms (Zambom and Ronaldo, 2013). These 
smoothed histograms are produced using kernel density estimates 
evaluated at the center of each histogram bin. In practice, an empirical 
density function can be formulated as 

f̂ i(x)∝
∑m

j=1
ĥi(xj)exp

{

−
(x − xj)

2

2ϕ

}

, (1)  

where the index i denotes the variable of interest (e.g. a spectral band), x 
takes values in the support of the i-th variable, m represents the total 
number of histogram bins, and the j-th Gaussian kernel function is 
centered in xj (i.e. the middle point of the j-th histogram bin), scaled 
through the bandwidth ϕ usually selected through Silverman’s (1986) 
rule-of-thumb (or other methods as described in Sheather and Jones, 
1991; Wand and Jones, 1995), and weighted by the estimated height of 
its histogram bar, ĥi(xj), for any j = 1,…,m. 

To obtain numerical data that approximate the evolution of the 
original functional predictors, MDS is applied week-by-week to extract 
an optimal number of dimensions from a distance matrix obtained by 
pairwise comparisons between county-level densities of a remotely 
sensed variable acquired during the growing season. The Jensen- 
Shannon (JS) distance, 

JS(f , g) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∫

R

f (x)
2

log
2f (x)

f (x) + g(x)
dx +

∫

R

g(x)
2

log
2g(x)

f (x) + g(x)
dx

√

,

provides a proper metric2 to measure the discrepancy between two 
generic density functions, saying f and g. This distance always returns a 
value in the interval [0,1], and it is more stable than other symmetrized 
divergences since it satisfies the triangular inequality (Nielsen, 2010). 
Moreover, the JS distance allows the MDS algorithm to map the 
smoothed histograms into a multidimensional Euclidean space. Thus, 
the data vectors generated by the MDS algorithm can be used in any 
standard prediction model, since they numerically summarize the most 
relevant features of county-level densities (such as within-field varia
tions, asymmetry, and other information beyond the first three 
moments). 

New datasets can be built by combining MDS results (as covariates) 
and NASS official statistics (as responses) at the county level. However, 
NASS estimates are publicly available for the previous years and only for 
the counties that satisfy NASS publication standards. Furthermore, 
predicting a within-season crop-type mask is helpful for cleaning 

spectral signals at the field level to generate a reliable set of artificial 
covariates for a specific crop planted during the current year. When 
survey data are available, they can improve the model by providing a 
direct and independent source of information on the average yield at the 
state or county level. Therefore, the survey summaries (usually weighted 
average, coefficients of variation, and sample size) can enter the model 
along with the other covariates allowing the chosen model to auto
matically adjust the prediction for the typical survey errors (Lessler and 
Kalsbeek, 1992; Biemer and Lyberg, 2003). County-level crop-yield 
predictions can be produced for the current year when a flexible 
regression model has been fully trained and validated on past available 
data. A cross-validation method for time-dependent data was proposed 
by Burman et al. (1994), but the performance evaluation of out-of- 
sample predictions is a better practice when making final decisions on 
the family of models to use (Tashman, 2000). 

To assess the uncertainty of the prediction error at the county level, 
the location-scale-shape paradigm (Rigby and Stasinopoulos, 2005) 
provides an established statistical methodology that allows modeling of 
the second moment of agricultural yields at the county level. However, 
the current implementations of most machine learning algorithms do 
not allow this framework to be fully explored. Thus, a simplified two- 
step approach can be considered instead (Gasser et al., 1986; Fan and 
Yao, 1998). First, a regression model predicting county-level yields is 
trained and validated. Then, its residuals are squared and used as the 
response variable of a second regression model providing a measure of 
uncertainty based on the same set of covariates used to predict the yield. 

4. Case study in North Dakota 

In 2018, North Dakota (ND) was one of the largest producers of 
wheat (mostly spring and durum), soybeans, canola, flax seeds, peas, 
oats, and honey in the US. Corn is usually the third major commodity 
crop cultivated in ND. Over the last couple of decades, there has been a 
shift to growing more soybeans and corn. Spring wheat is cultivated 
almost uniformly over the entire state, while soybeans and corn are 
respectively the dominant cultivations in the eastern and southern sides 
of the state. Using the RGB standard (Süsstrunk et al., 1999; Stone, 2005; 
Stone, 2016), Fig. 4 illustrates the historic crop extents in ND aggregated 
from 2008 to 2019 for corn (in red), soybeans (in green), and wheat (in 
blue). Swaths of orange in the southeast of the state correspond to areas 
that were frequently planted to either corn or soybeans, and swaths of 
purple seen in the south-central portion of the state represent areas that 
were frequently planted to either corn or wheat. 

Due to its northern mid-continental geographical position, ND ex
periences cold winters, so the onset of fieldwork often lags behind the 
rest of the US. Delays also affect harvesting dates, which can impact 
yields. Usually, drier and warmer conditions in May allow farmers to 
make good planting progress once fieldwork is possible. Experts on the 
Agricultural Statistics Board (ASB) consider these events, along with 
survey summaries and remotely sensed values, when setting the official 
statistics. 

Historical official yield estimates3 for corn, soybeans, and wheat for 
each of the 53 counties in ND from 2008 to 2019 are considered in this 
study. This range of years coincides with the availability of the NASS 
CDLs having full national coverage (Boryan et al., 2011). CDLs are used 
to screen the remotely sensed spectral amplitudes of the red, near-IR, 
diurnal and nocturnal thermal bands. To establish proper support 
boundaries of the histograms, the minimum and maximum values of 
each band are computed using all pixels acquired over ND during the 
2008–2019 time window. Once the remotely sensed values have been 
cleaned by masking out spurious signals in Google Earth Engine (Gor
elick et al., 2017), the filtered data of each 8-day week from January 1st 

2 A “proper metric” satisfies all conditions required by definition to induce a 
specific class of topological spaces (e.g. see Engelking, 1989, Section 4.1). 

3 Historical estimates are retrieved from https://www.nass.usda.gov/Quick_ 
Stats/ (accessed on November 24, 2020). 
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to October 31st are summarized at the county level by computing 38 
standard histograms (Pearson, 1895) of the four selected bands using 
256 bins for all ND counties in any given year. Smoothed histograms 
(Fig. 5) are successively obtained as in Eq. (1) to better approximate the 
marginal density of the spectral amplitudes over the fields planted with 
corn, soybeans, and wheat. The 96,672 smoothed histograms per crop 
are successively used to produce numerical covariates for each county 
through the MDS algorithm. The MDS has been found to perform well on 
the root mean squared error (RMSE) of the predicted yields when 
extracting on average five features from each weekly distance matrix. 
The artificial values produced via MDS are then linked to historical 
NASS official statistics and other numerical variables including county- 
level survey summaries, and longitude/latitude coordinates of county 
centroids. Before training, validating, and testing several machine 
learning models, all 768 input variables are standardized to have zero 
mean and unit variance. Counties with missing historical yields are 
ignored in the analysis. Eventual missing data from the survey sum
maries are replaced with zeroes, which are consistent with the expec
tation of the standardized input variables. 

Among several machine learning algorithms, the following are 
considered:  

• Extreme gradient boosting (xgbLinear; Chen et al., 2020).  
• CART without bagging (rpart2; Therneau and Atkinson, 2019) and 

with bagging (treebag; Lin and Li, 2014, Chapter 11.4).  
• Conditional inference trees (ctree2; Hothorn et al., 2006).  

• Evolutionary trees (evtree; Grubinger et al., 2014).  
• Tree-based ensemble modelling (nodeHarvest; Meinshausen, 

2010).  
• RF (rf; Liaw and Wiener, 2002) and conditional RF (cforest; 

Hothorn et al., 2006; Strobl et al., 2007; Strobl et al., 2008).  
• Cubist (cubist; Quinlan, 1992; Quinlan, 1993; Kuhn and Johnson, 

2013, this model uses committees for boosting linear models fitted 
on an input dataset partitioned by regression trees, and it also han
dles residual dependencies using local smoothing via k-nearest 
neighbors).  

• Relevance vector machines with a linear kernel (rvmLinear; 
Tipping, 2000; Camps-Valls et al., 2007) and polynomial kernels 
(rvmPoly; Fei et al., 2013).  

• Model averaged ANN (avNNet; Ripley, 2007) and ANN with feature 
extraction (pcaNNet; Ravi and Pramodh, 2008).  

• LSTM networks (LSTM; Hochreiter and Schmidhuber, 1997) as 
implemented by Tian et al. (2021). 

Table 1 shows the aforementioned models, and their correspondent 
training and validation settings considered for this case study. All 
models, with the exception of the LSTM networks, have been imple
mented using the R-package caret and related package dependencies. 
The LSTM models have been implemented using the python library 
Keras with a Tensorflow backend. 

Each of the models in Table 1 has its own strengths and weaknesses 
depending on both their mathematical formulation and fitting 

Fig. 3. Graphical representation of the algorithm to predict agricultural yields at the county level using density functions estimated from remotely sensed data 
as histograms. 

Fig. 4. Spatial distribution of the cultivation frequency for corn, soybean, and wheat fields in North Dakota between 2008 and 2019 using the RGB-color standard. 
Swaths of orange in the southeast correspond to areas frequently planted to either corn or soybeans. Swaths of purple seen in the south-central part of the state 
represent areas frequently planted to either corn or wheat. 
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algorithm. Different models are more robust with respect to outliers, 
shifting domains (mainly due to the use of the realizations from non- 
stationary random processes as covariates; Ben-David et al., 2010; 
Bobu et al., 2018), or model misspecification (either due to the exclusion 
of important covariates or improper choice of model family). To select 
the best performing model in terms of robustness and prediction accu
racy, the minimax criterion (Wald, 1949; Savage, 1951; Robbins, 1964; 
Berger, 2013) was applied. This criterion summarizes the performance 
of a single model in terms of the largest RMSE, expressed in bushels per 
acre – bu/ac) among all years modeled (2012 and 2019), and the model 
with the smallest maximum RMSE is selected. The RMSE is computed 
using the model-based predictions and the official NASS yield values of 
the counties in ND. 

Before fitting the chosen regression models, the data are split into 
three parts (Hastie et al., 2009, Chapter 7): the statistical units (i.e., the 
county-level data) belonging to the training set (used to estimate the 
parameters), the validation set (used to mitigate and/or avoid over- 
fitting) are randomly selected by partitioning the data, and the 
remaining statistical units populate the test set (used to evaluate the 
extrapolation performance of the model on new data points). In 
particular, training and 10-fold cross-validation (Molinaro et al., 2005; 
Kuhn and Johnson, 2013) are performed sequentially on the data 
considered as information from the previous years. Training and 10-fold 
cross-validation are then replicated 10 times (due to computational 
limitations) on randomized partitions of the data to assess the distri
bution of the RMSE for guiding model selection (Kim, 2009). On the 
other hand, prediction accuracy is evaluated using only the data from 
the following year (considered as current). Table 2 summarizes the data 
subsets and the numbers of statistical units. 

To compare the predictive performances of each model family, the 

maximum RMSE computed between 2012 and 2019 is shown in Table 3. 
This table also separates the results for each commodity showing the 
worst performance during training, validation, and testing (or extrapo
lation). Most models have produced better results on training (with the 
exception of avNNet for soybeans, which performed better during 
validation). Based on validation results, cubist represents the best 
model choice for predicting yields, even if xgbLinear, cforest, 
ctree2, evtree, nodeHarvest, rf, rpart2 and treebag have 
produced comparable results with validation RMSEs lower than 16.43 
bu/ac for corn, 3.39 bu/ac for soybeans, and 3.312 bu/ac for wheat. In 
particular, cubist has been the most robust model on the testing sets 
for corn (with RMSE of 10.3 bu/ac) and soybeans (with RMSE of 5.35 
bu/ac). However, xgbLinear, cforest, ctree2, rf and treebag 
have outperformed cubist in robustness producing RMSE lower than 
4.24 bu/ac on the testing sets for wheat, where xgbLinear attained the 
minimax RMSE at 3.46 bu/ac. 

To test unexplained autocorrelations among the model residuals, 
Moran’s I test (Moran, 1950; Kelejian and Prucha, 2001) has been 
computed by relating spatio-temporal information and the differences 
between the official yields and fitted values produced by Cubist using all 
data from the training and validation sets. Spatio-temporal information 
among data points has been encoded into a distance matrix computed by 
summing the temporal lags (in years) and the geodesic distances (in 
kilometers) between each pair of county centroids (Karney, 2013). The 
results in Table 4 show a significant absence of unexplained autocor
relation; therefore, the residuals can be considered as independent with 
the exception of those produced for soybeans in 2018 and 2019. 

Table 5 presents the performances of the model families used to 
assess the uncertainty of county-level yields. Based on validation results, 
avNNet represents the best model choice for computing the uncertainty 

Fig. 5. Smoothed weekly histograms obtained for red (top-left), near-IR (top-right), and the two thermal bands (on the bottom) over the corn fields of Barnes County 
(ND) in 2008. 
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of yields, and only pcaNNet has produced similar results with RMSEs 
lower than 45.3 squared-bushels per squared-acre (bu2/ac2) for corn, 
0.5 bu2/ac2 for soybeans, and 0.65 bu2/ac2 for wheat. Most model 
families have provided similar results on the testing sets producing 
minimax RMSE between 513.12 and 539.44 bu2/ac2 for corn, between 
113.85 and 115.01 bu2/ac2 for soybeans, and between 24.60 and 36.76 
bu2/ac2 for wheat. The most robust models evaluated on the testing sets 
are treebag for corn, and LSTM for soybeans and wheat. 

Standard errors (SE) are computed using the square root of the 
positive part of the outputs produced by the avNNet models. The dis
tribution of model-based SEs is then summarized via the median and the 
maximum values calculated at the state level (see Table 6). Through the 
years, the distribution of the county-level SEs has been quite stable for 
corn; however, the variability of soybean and wheat yields increased in 
the recent years of the study window. Between 2012 and 2019, the SEs 
of corn yields did not exceed 9.94 bu/ac, the maximum SE of soybean 
yields at the county level steadily increased from 0.68 bu/ac to 3.93 bu/ 
ac, and the largest SEs of wheat yields fluctuated between 1.6 bu/ac and 

Table 1 
Machine-learning algorithms and validation settings used in the study.  

Algorithm Setting Notes 

Extreme gradient boosting Fitted using combinations of boosting iterations, 
learning rates, and elastic-net penalties. The 
combinations include boosting iterations ranging 
from 5 to 200 with step in increments of 5, 
learning rates in the set {0.1,0.01,0.001}, and 
elastic-net penalty using either 0, 1, or 2 as values 
for LASSO and ridge weighting.  

CART Trained and validated with and without bagging, 
where the maximum tree-depth was allowed to 
range from 5 to 15 nodes. 

Conditional inference trees Used to test conditional splits with at 90%, 95% 
and 99% significance levels. 

Evolutionary trees Trained with genetic algorithms that randomly 
decrease the model complexity using a penalty 
assuming values 0.25, 0.75, and 1. 

Tree-based ensemble modelling Set to consider two-ways interactions, as well as 
both deterministic and stochastic splitting 
criteria. 

RF/ Conditional RF Both were validated considering either 10, 100, 
1,000 and 10,000 regression trees. 

Cubist Validated using 5, 10, 25, 50, and 100 boosting 
committees, combined with a limited amount of 
nearest-neighbors ranging from 0 to 9. 

Relevance vector machines Fitted using linear kernel and second-order 
polynomial kernels. 

Model averaged ANN/ ANN 
with feature extraction 

Both were constructed using a single hidden layer 
consisting of 2, 5, and 7 nodes linearly combined 
to the output layer. Fitted using 0.1, 0.01 and 
0.001 decay values. 

LSTM networks The structure of the layers proposed by Tian et al. 
(2021) has been identically replicated. The 
default settings of the python library Keras for the 
Adam aglorithm (Kingma and Ba, 2014) have 
been used to fit the model.  

Table 2 
Summary of data partitions (training, validation and test sets).  

Years used for training and validation Year used for testing 

(191 tr. and 21 valid. units) 2008, 2009, …, 2011 (53 units) 2012 
(239 tr. and 26 valid. units) 2008, 2009, …, 2012 (53 units) 2013 
(286 tr. and 32 valid. units) 2008, 2009, …, 2013 (53 units) 2014 
(334 tr. and 37 valid. units) 2008, 2009, …, 2014 (53 units) 2015 
(382 tr. and 42 valid. units) 2008, 2009, …, 2015 (53 units) 2016 
(429 tr. and 48 valid. units) 2008, 2009, …, 2016 (53 units) 2017 
(477 tr. and 53 valid. units) 2008, 2009, …, 2017 (53 units) 2018 
(525 tr. and 58 valid. units) 2008, 2009, …, 2018 (53 units) 2019  

Table 3 
Maximum RMSEs for the yields predicted between 2012 and 2019. The selected model is based on the validation results (in bold), while the best extrapolation 
performances are highlighted in italic.  

Model Results for corn Results for soybeans Results for wheat  

Training Validation Testing Training Validation Testing Training Validation Testing 

avNNet 18.541 23.184 46.374 4.879 4.266 17.557 1.843 7.295 27.147 
cforest 8.176 12.708 17.569 1.982 2.727 6.241 1.307 1.920 3.707 
ctree2 14.751 15.905 21.032 2.903 2.975 6.989 1.865 2.640 4.205 
cubist 4.352 11.306 10.304 1.112 2.477 5.351 0.758 1.064 4.239 
evtree 9.466 15.874 21.662 2.525 3.237 6.831 1.715 2.458 4.444 

LSTM 41.440 39.022 56.864 9.868 9.514 12.028 15.792 16.957 19.754 
nodeHarvest 13.516 15.538 22.810 2.964 3.043 7.727 3.249 3.312 5.594 

pcaNNet 22.219 24.596 32.058 5.032 6.480 11.209 6.387 8.927 11.624 
rf 5.201 13.230 17.303 1.099 2.701 6.235 0.723 1.890 3.685 

rpart2 10.193 16.430 18.958 2.711 3.388 7.320 2.531 3.034 4.550 
rvmLinear 17.672 63.888 >1000.000  6.255 26.790 339.557 7.176 24.011 510.301 

rvmPoly 8.441 24.060 296.440 2.407 5.772 83.716 2.004 7.887 124.297 
treebag 8.404 13.883 18.402 2.333 2.853 6.407 2.037 2.385 4.185 

xgbLinear 0.045 12.522 16.320 0.089 2.889 7.067 0.055 1.425 3.462  

Table 4 
Results of the autocorrelation test based on Moran’s I statistics computed with 
the residuals produced by the Cubist model (bold p-values highlight unexplained 
residual autocorrelation).   

Year Observed Expected Std.Dev. P-value 

Corn 2012 − 0.067 − 0.0047 0.038 0.098  
2013 − 0.036 − 0.0038 0.029 0.267  
2014 − 0.036 − 0.0032 0.024 0.175  
2015 − 0.039 − 0.0027 0.020 0.080  
2016 − 0.017 − 0.0024 0.018 0.404  
2017 − 0.028 − 0.0021 0.016 0.091  
2018 − 0.027 − 0.0019 0.014 0.070  
2019 − 0.026 − 0.0017 0.013 0.055  

Soybeans 2012 0.015 − 0.0057 0.041 0.615  
2013 − 0.024 − 0.0044 0.031 0.514  
2014 − 0.036 − 0.0036 0.025 0.198  
2015 − 0.033 − 0.0030 0.021 0.141  
2016 − 0.035 − 0.0026 0.017 0.057  
2017 − 0.004 − 0.0023 0.016 0.933  
2018 0.040 − 0.0020 0.014 0.004  
2019 0.060 − 0.0018 0.013 0.000  

Wheat 2012 − 0.014 − 0.0047 0.037 0.807  
2013 − 0.024 − 0.0038 0.029 0.482  
2014 − 0.017 − 0.0032 0.024 0.550  
2015 − 0.006 − 0.0027 0.020 0.885  
2016 − 0.020 − 0.0024 0.018 0.311  
2017 − 0.025 − 0.0021 0.016 0.136  
2018 − 0.011 − 0.0019 0.014 0.499  
2019 0.009 − 0.0017 0.013 0.387  
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6.53 bu/ac and had an upward trend. 
The avNNet method for assessing yield uncertainties is then evalu

ated by testing for unexplained residual autocorrelation based on the 
same spatio-temporal relationships considered for the previous Moran’s 
I tests. Based on the results of Table 7, the residuals of the uncertainty 
models for wheat are assumed to be independent. However, the last 

three models of soybeans and four models (among eight) for corn have 
produced residuals with unexplained autocorrelations that can be 
addressed by including spatio-temporal dynamics in the chosen models. 

The predictions produced by the proposed methodology are then 
compared with those produced by using only survey data, and a stan
dard remote sensing approach (as explained in Section 2). Tables 8 and 
9, respectively, report the RMSE and the mean absolute percentage error 
(MAPE) from the official statistics (Chen and Yang, 2004). From a first 
analysis of these tables, the current remote sensing methodology is less 
precise than the proposed predictive approach. Although the RMSEs 
used to compare the three methods are quite stable across time, the 
survey results produced for corn in 2012, 2015 and 2019, and for soy
beans (with the exception of 2016 and 2017) had larger RMSEs than 
those produced by the proposed methodology. However, the survey 
achieves better RMSEs for wheat than the approaches using remote 
sensing data. Furthermore, a substantial improvement of soybean results 
is noted when the average MAPE of the survey passed from 12.87% 
(before 2016) to 4.71% (after 2016). Nonetheless, the same improve
ments in MAPEs are not observed when using the other two methods, 
which remained quite stable across time. Using the minimax approach, 
the proposed methodology would have been selected for corn and soy
beans with a minimax MAPE of 6.38% and 7.08% respectively, and a 
pure survey approach would have been selected instead for wheat with a 
minimax MAPE of 8.31%. 

5. Conclusion 

Remotely sensed data provide a detailed description of the evolution 
of several physical phenomena happening on the Earth surface. Several 
traditional methods, such as radial smoothing or the conditional average 
within administrative boundaries, provide enough information to sum
marize the complexity of these data by accounting only for the first 
moment of the phenomena observed. Due to their simplicity, these 
methods are appealing when linking official statistics and other vari
ables obtained by summarizing remotely sensed data. However, 
empirical densities provide a full description of a stochastic process to be 
used as an input in a modelling framework. From a statistical point of 
view, the estimation of empirical densities suffers computational 
drawbacks due to high-dimensionality, optimal search of matrix-valued 
bandwidths, nonlinear transformations, and data sample-size (which 
mostly depends on the spatio-temporal resolutions of satellite imagery). 

To address these problems, inference on the physical phenomena of 
interest is performed on the marginal distribution of each variable by 
conditioning on specific areas within administrative boundaries. The 
dynamical evolution through time of the estimated distributions can 
then be viewed as functional data. These are known to provide more 
information than scalar covariates, thus helping to improve model se
lection, and prediction analyses (Ramsay and Silverman, 2007). 

Table 5 
Maximum RMSEs for the variances of yields computed between 2012 and 2019. The selected model is based on the validation results (in bold), while the best 
extrapolation performances are highlighted in italic.  

Model Results for corn Results for soybeans Results for wheat  
Training Validation Testing Training Validation Testing Training Validation Testing 

avNNet 49.785 40.199 514.987 7.842 0.176 114.451 0.142 0.522 36.759 
cforest 42.493 48.533 516.892 7.570 5.339 114.803 2.083 1.943 29.052 
ctree2 57.727 51.992 520.953 7.795 6.077 114.806 2.385 2.119 28.861 
cubist 31.217 50.033 515.418 4.670 6.668 114.806 1.299 2.171 28.999 
evtree 45.723 58.120 520.127 7.670 6.479 114.806 2.105 2.470 28.854 

LSTM 78.880 108.229 516.234 5.513 2.475 113.848 3.039 1.249 24.595 
nodeHarvest 51.481 49.374 517.774 8.418 5.344 114.804 2.210 2.012 29.052 

pcaNNet 49.906 45.254 518.790 8.170 0.498 115.009 0.116 0.649 29.345 
rf 26.136 51.751 516.823 4.265 5.648 114.802 1.266 2.051 28.829 

rvmLinear 40.664 61.355 539.441 5.818 8.558 114.815 1.787 2.584 30.771 
rvmPoly 0.010 57.156 521.947 0.857 6.913 114.816 0.007 2.383 29.315 
treebag 42.378 49.921 513.414 7.532 5.755 114.805 2.064 2.080 28.856 

xgbLinear 28.546 56.533 521.153 3.831 8.175 114.783 1.286 2.279 29.049  

Table 6 
Summary statistics (median and maximum values) of the county-level standard 
errors (bushels per acre) produced by the neural-network-averaging models.   

Std. err. for corn Std. err. for soybeans Std. err. for wheat 
Year Median Maximum Median Maximum Median Maximum 

2012 2.441 9.941 0.039 0.678 0.214 2.187 
2013 2.468 8.133 0.064 1.276 0.157 1.598 
2014 1.752 8.629 0.058 1.233 0.116 2.037 
2015 2.788 7.287 0.064 1.839 0.151 1.930 
2016 2.258 7.696 0.080 2.150 0.164 3.311 
2017 2.505 7.901 0.983 3.446 0.195 3.760 
2018 3.220 8.736 0.890 3.565 0.238 5.959 
2019 3.131 8.022 0.928 3.925 0.254 6.531  

Table 7 
Results of the autocorrelation test based on Moran’s I statistics computed with 
the residuals produced by the avNNet model for standard errors (bold p-values 
highlight unexplained residual autocorrelation).   

Year Observed Expected Std.Dev. P-value 

Corn 2012 0.105 − 0.0047 0.036 0.002  
2013 0.051 − 0.0038 0.028 0.052  
2014 0.042 − 0.0032 0.023 0.048  
2015 0.060 − 0.0027 0.020 0.002  
2016 0.024 − 0.0024 0.016 0.093  
2017 0.024 − 0.0021 0.013 0.051  
2018 0.012 − 0.0019 0.013 0.276  
2019 0.029 − 0.0017 0.012 0.008  

Soybeans 2012 − 0.006 − 0.0057 0.038 0.997  
2013 − 0.016 − 0.0044 0.028 0.687  
2014 − 0.018 − 0.0036 0.023 0.538  
2015 − 0.013 − 0.0030 0.018 0.589  
2016 0.008 − 0.0026 0.015 0.490  
2017 0.017 − 0.0023 0.009 0.027  
2018 0.070 − 0.0020 0.008 0.000  
2019 0.030 − 0.0018 0.005 0.000  

Wheat 2012 − 0.009 − 0.0047 0.013 0.740  
2013 − 0.015 − 0.0038 0.020 0.577  
2014 − 0.016 − 0.0032 0.008 0.083  
2015 − 0.001 − 0.0027 0.011 0.864  
2016 − 0.013 − 0.0024 0.012 0.349  
2017 − 0.015 − 0.0021 0.009 0.155  
2018 − 0.001 − 0.0019 0.009 0.950  
2019 − 0.003 − 0.0017 0.004 0.765  
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However, due to their nature, most of the traditional methods do not 
capture the full complexity expressed by these data. For a given metric 
distance between two functions, MDS is an algorithmic solution that can 
map functional data into a vector-valued space. This process generates a 
desired number of numerical features that summarize most of the in
formation embedded into the estimated empirical distributions. These 
features are successively linked to survey summaries and official sta
tistics to enhance the analyses as shown in Table 8 and 9. 

This approach has been shown to be capable of generating artificial 
covariates that can be effective when used in predictive models for crop 
yield predictions at the county level. However, when enriching the 
model by including higher moments of the distributions inferred at the 
county level, the proposed methodology cannot downscale crop yield 
predictions to finer spatial resolutions (such as at the pixel level). 
Depending on the availability of satellite imagery, finer resolution 
remotely sensed data can be linked to precision agriculture data for 
more detailed analyses. 

Future research will focus on studying the robustness of this 
approach to the domain-shift problem. In particular, model fitness will 
be evaluated by accounting for ongoing advancements in both survey 
methods and data acquisition technologies based on satellites. Further 
modelling extensions may include temporal dynamics of the residuals. 
These often refine the model results by addressing unexplained spatio- 
temporal autocorrelations (e.g. see Zhang et al., 2018). Furthermore, 
the proposed methodology can be tested on its ability to simultaneously 
process a variety of county-level information retrieved from all states in 
the conterminous US. 
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